Computer graphics III -Low-discrepancy sequences and quasi-Monte Carlo methods

Jaroslav Křivánek, MFF UK
Jaroslav.Krivanek@mff.cuni.cz

Quasi-Monte Carlo

- Goal: Use point sequences that cover the integration domain as uniformly as possible, while keeping a 'randomized' look of the point set

High Discrepancy (clusters of points)

Low Discrepancy (more uniform)

Transformation of point sets

MC vs. QMC

Quasi Monte Carlo (QMC) methods

- Use of strictly deterministic sequences instead of random numbers
- All formulas as in MC, just the underlying proofs cannot reply on the probability theory (nothing is random)
- Based on sequences low-discrepancy sequences

Defining discrepancy

- s-dimensional "brick" function:

$$
\mathcal{L}(\mathbf{z})=\left\{\begin{array}{l}
1 \text { if } 0 \leq\left.\mathbf{z}\right|_{1} \leq v_{1}, 0 \leq\left.\mathbf{z}\right|_{2} \leq v_{2}, \ldots, 0 \leq\left.\mathbf{z}\right|_{s} \leq v_{s} \\
0 \text { otherwise } .
\end{array}\right.
$$

- True volume of the "brick" function:

$$
V(A)=\prod_{j=1}^{s} v_{j}
$$

- MC estimate of the volume of the "brick":

$$
\begin{aligned}
& \frac{1}{N} \sum_{i=1}^{N} f\left(\mathbf{z}_{i}\right)=\frac{m(A)}{N} \\
& \text { total number of sample points } \\
& \text { CG III (NPGR010) - J. Krivíneck } 2015
\end{aligned}
$$

Discrepancy

- Discrepancy (of a point sequence) is the maximum possible error of the MC quadrature of the "brick" function over all possible brick shapes:

$$
\mathcal{D}^{*}\left(\mathbf{z}_{1}, \mathbf{z}_{2}, \ldots \mathbf{z}_{N}\right)=\sup _{A}\left|\frac{m(A)}{N}-V(A)\right|
$$

- serves as a measure of the uniformity of a point set
- must converge to zero as N -> infty
- the lower the better (cf. Koksma-Hlawka Inequality)

Koksma-Hlawka inequality

- the KH inequality only applies to f with finite variation
- QMC can still be applied even if the variation of f is infinite

Van der Corput Sequence (base 2)

i	binary form of i	radical inverse	H_{i}
1	1	0.1	0.5
2	10	0.01	0.25
3	11	0.11	0.75
4	100	0.001	0.125
5	101	0.101	0.625
6	110	0.011	0.375
7	111	0.111	0.875

- point placed in the middle of the interval
- then the interval is divided in half
- has low-discrepancy

Van der Corput Sequence

- b ... Base
- radical inverse

$$
i=\sum_{j=0}^{\infty} a_{j}(i) b^{j} \mapsto \phi_{b}(i):=\sum_{j=0}^{\infty} a_{j}(i) b^{-j-1}
$$

Van der Corput Sequence (base b)

```
double radicalInverse(const int base, int i)
{
    double digit, radical;
    digit = radical = 1.0 / (double)base;
    double inverse = 0.0;
    while(i)
    {
        inverse += digit * (double)(i % base);
        digit *= radical;
        i /= base;
    }
    return inverse;
}
```


Sequences in higher dimension

Halton sequence $x_{i}:=\left(\Phi_{b_{1}}(i), \ldots, \Phi_{b_{s}}(i)\right)$ where b_{i} is the i-th prime number

Hammersley point set $x_{i}:=\left(\frac{i}{n}, \Phi_{b_{1}}(i), \ldots, \Phi_{b_{s-1}}(i)\right)$

Use in path tracing

- Objective: Generated paths should cover the entire high-dimensional path space uniformly
- Approach:
- Paths are interpreted as "points" in a high-dimensional path space
- Each path is defined by a long vector of "random numbers"
- Subsequent random events along a single path use subsequent components of the same vector
- Only when tracing the next path, we switch to a brand new "random vector" (e.g. next vector from a Halton sequence)

Quasi-Monte Carlo (QMC) Methods

- Disadvantages of QMC:
- Regular patterns can appear in the images (instead of the more acceptable noise in purely random MC)
- Random scrambling can be used to suppress it

Stratified sampling

Quasi-Monte Carlo

Fixní náhodná sekvence

CG III (NPGR010) - J. Křivánek 2015

